BASIC MATH CALCULATORS


TOOL: HEXADECIMAL TO DECIMAL CONVERTER (WITH STEPS)


BASE N TO DECIMAL CONVERTERS

23456789111213141516

HEXADECIMAL TO DECIMAL CONVERTER (WITH STEPS)

Enter a hexadecimal number.


(CAFE)16 = (51966)10

SOLUTION

CAFE14x16015x16110x16212x163Place Value

We multiply each digit by its place value and add the products.

(CAFE)16 = (12 × 163) + (10 × 162) + (15 × 161) + (14 × 160)

= (12 × 4096) + (10 × 256) + (15 × 16) + (14 × 1)

= 49152 + 2560 + 240 + 14

= (51966)10

OTHER INFORMATION

Copied to clipboard
Copy Text

BASE N TO DECIMAL CONVERTERS

23456789111213141516

INFORMATION

HEXADECIMAL AND DECIMAL NUMBERS

Binary, octal, decimal and hexadecimal numbering systems are commonly used in mathematics, computer science and electrical engineering.

Hexadecimal Numbering System (Base 16): In the hexadecimal system, numbers are represented using sixteen digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E and F. The values of the letters used in hexadecimal digits are shown below.

The ones digit has a place value of 160 = 1, the next digit to the left has a place value of 161 = 16, then 162 = 256, and so on. As we move one place to the left, the place value increases by a factor of 16.

Decimal Numbering System (Base 10): In the decimal system, numbers are represented using ten digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9. Each digit has a place value of 10 raised to a power depending on its position in the number.

HEXADECIMAL TO DECIMAL CONVERSION

Each hexadecimal number has a unique representation in decimal numbering system. Hexadecimal to decimal (hex to dec) conversion is the process of computing the equivalent decimal representation of a base 16 number. To convert a hexadecimal number to decimal we multiply each digit by its place value and add the products.

Hexadecimal number place values

Each place value in hexadecimal can be represented by an exponential number with a base of 16. Exponent of the place value increases by 1 if we move 1 digit left and the exponent of the ones digit is equal to zero.

BINARY TO DECIMAL CONVERSION EXAMPLES

EXAMPLE:

Find the decimal equivalent of the number 1A316 in hexadecimal system.

To find the decimal equivalent of this number, we multiply each digit by its place value and then sum up the products.

1A316 = 1 · 162 + 10 · 161 + 3 · 160

= 1 · 256 + 10 · 16 + 3 · 1

= 256 + 160 + 3

= 41910

In the equations above, we replaced A with 10 because the value of the letter A is 10.

EXAMPLE:

Find the decimal equivalent of the hexadecimal number B0.416.

The place values of B0.416 are shown below.

Hex to dec conversion example

Multiply those values with the corresponding digits and add the products. (Remember that hexadecimal B is equal to 11.)

... ... ...

...

...

...

HEXADECIMAL TO DECIMAL CONVERSION TABLE

The table below shows the decimal equivalents of the smallest non-negative hexadecimal numbers up to 100.

016 = 010

116 = 110

216 = 210

316 = 310

416 = 410

516 = 510

616 = 610

716 = 710

816 = 810

916 = 910

A16 = 1010

B16 = 1110

C16 = 1210

D16 = 1310

E16 = 1410

F16 = 1510

1016 = 1610

1116 = 1710

1216 = 1810

1316 = 1910

1416 = 2010

1516 = 2110

1616 = 2210

1716 = 2310

1816 = 2410

1916 = 2510

1A16 = 2610

1B16 = 2710

1C16 = 2810

1D16 = 2910

1E16 = 3010

1F16 = 3110

2016 = 3210

2116 = 3310

2216 = 3410

2316 = 3510

2416 = 3610

2516 = 3710

2616 = 3810

2716 = 3910

2816 = 4010

2916 = 4110

2A16 = 4210

2B16 = 4310

2C16 = 4410

2D16 = 4510

2E16 = 4610

2F16 = 4710

3016 = 4810

3116 = 4910

3216 = 5010

3316 = 5110

3416 = 5210

3516 = 5310

3616 = 5410

3716 = 5510

3816 = 5610

3916 = 5710

3A16 = 5810

3B16 = 5910

3C16 = 6010

3D16 = 6110

3E16 = 6210

3F16 = 6310

4016 = 6410

4116 = 6510

4216 = 6610

4316 = 6710

4416 = 6810

4516 = 6910

4616 = 7010

4716 = 7110

4816 = 7210

4916 = 7310

4A16 = 7410

4B16 = 7510

4C16 = 7610

4D16 = 7710

4E16 = 7810

4F16 = 7910

5016 = 8010

5116 = 8110

5216 = 8210

5316 = 8310

5416 = 8410

5516 = 8510

5616 = 8610

5716 = 8710

5816 = 8810

5916 = 8910

5A16 = 9010

5B16 = 9110

5C16 = 9210

5D16 = 9310

5E16 = 9410

5F16 = 9510

6016 = 9610

6116 = 9710

6216 = 9810

6316 = 9910

6416 = 10010

WHAT IS HEXADECIMAL TO DECIMAL CONVERTER?

Hexadecimal to decimal converter,

  • Computes the decimal equivalent of the entered number,
  • Describes the solution step by step and
  • Illustrates the place values.

HOW TO USE HEXADECIMAL TO DECIMAL CONVERTER?

You can use hexadecimal to decimal converter in two ways.

  • USER INPUTS

    Convert button

    You can enter a hexadecimal number into the input box and then click the 'CONVERT' button. The result and explanations will appear below the calculator.

  • RANDOM INPUTS

    Random button-convert

    You can click on the DIE ICON next to the input box to generate a random hexadecimal number, which will be automatically entered into the calculator. The result and explanations will then appear below the calculator. You can also create your own examples and practice using this feature.

  • CLEARING THE INPUT BOX

    Clear button-two inputs

    To find the decimal equivalent of another hexadecimal number, click on the CLEAR button to clear the input box.

  • COPYING & DOWNLOADING THE SOLUTION

    • Copy Link

      You can copy the generated solution by clicking on the 'Copy Text' link located below the solution panel.

    • Download Link

      You can also download the solution as an image file with a .jpg extension by clicking on the 'Download Solution' link located at the bottom of the solution panel. You can then share the downloaded image file.

 

CALCULATORS

Base Converters